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Critical behaviour of the two-dimensional EX model with a 
Gaussian bond distribution 

N Kawashima, N Hatano and M Suzuki 
Department of Physia, Faculty of Science, University of Tbkyo, Hongo. Bunkyo-ku. 
Tbkyo 113. Japan 

Received 31 March 1992 

AbsIracL Ihe spin-glass susceplibilily of lhe two-dimensional E4 model is investigaled 
by the numerical transfer-matrix method. It is found lhal the droplet picture gives a 
fairly goad description of lhe ailical behaviour. ?le clitia1 Pxponenl 0 E - l / u  is 
eslimated as 8 = -0.48(1),  lmlh lhrough finile-size scaling and rhmugh lhe mherent- 
anomaly method [CAM). The present atimate iS wnsislenl with our previous eslimate 
0 = -0.47G. ?lese values do not, however, agree with the stiiiness-exponent estimate 
Os through the domain-wall saling. This disagreemen1 suggeas that lhe assumption 
8 = 0s in the domain-wall scaling does not hold. 

1. Introduction 

Although the spin-glass problem has attracted interest from many researchers, the 
nature of the low-temperature phase of finite-dimensional spin-glass systems remains 
unclarified. For instance, it has not been settled yet whether the P(q)  of Parisi 
has non-trivial structure for the three-dimensional &.J model below the critical tem- 
perature, There are two main pictures of it which may explain correctly the low- 
temperature phase of the model. One  is the mean-field picture, according to which 
we can obtain numerous thermodynamic states and the non-trivial structure of P( y), 
This picture also suggests the existence of a phase transition in the presence of a mag- 
netic field. The other is the so-called droplet picture [I]. In this picture there is only 
one pair (or, at most, a finite number of pairs) of thermodynamic states, and P( q )  
consists of a finite number of &peaks. In addition, the phase transition is considered 
to be absent in the presence of a uniform field in contrast to the mean-field picture. 
Besides these two pictures, some numerical evidences suggest another possibility. For 
example, several numerical calculations [2-51 show that the variance of P ( q )  may he 
vanishing even in the case where T < T, and H = 0. 

As for the two-dimensional Edwards-Anderson (EA) model with a symmetric 
bond-distribution, few researchers doubt that a finite-temperature phase transition 
does not occur. A number of numerical works have been done on the criticality of 
the two-dimensional *tJ model at T = 0. For the i J  model, numerical ulculations 
[6] have given several estimates lor the exponents U, 71 and ySG, which are consistent 
with each other. 

As for the two-dimensional model with a Gaussian bond distribution, there is 
disagreement between estimates of the exponent U so far obtained. In the domain- 
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wall-scaling argument 171, the absolute value of the stiffness exponent Os which char- 
acterizes the size dependence of the domain-wall energy is assumed to be q u a l  to 
the inverse of the critical exponent U. The domain-wall energy here is defined by 
the difference in ground-state energies of two systems which differ from each other 
only in their boundaty condition, a periodic boundaly condition is applied to one 
system and an antiperiodic boundary condition to the other. The index Os has been 
estimated through numerical calculations as follows [S ,  91: 

-es = 0.291(2) [si (1.1) 
= 0.281(5) [9]. (1.2) 

Estimation of U(= -l/O) has also been done by calculating the largest eigenvalues 
in the even and odd eigenspaces of transfer matrices (10,11]. The results are 

U(= -1,’O) = 2.96(22) - 1/0.34 [ lo]  (1.3) 
= 4,2(5)  - 1/0.24 1111. (1.4) 

It should be noted that all the above estimates are not bascd on direct calculations of 
macroscopic physical quantities, or derivatives of the free energy. Recently, two of the 
present authors calculated 1121 zero-temperature magnetization for various strength 
of the magnetic field. The finite-size scaling analysis on the resulting data yielded 

- 0 = 0.476(5). (1.5) 

The same data yielded -0 = 0.51(4) when an additional correction term is included 
in the fitting function. All the above estimaes of 0 apparently do not agree with each 
other within the limit of statistical error. Whether this disagreement is due to finite- 
size effect or due to a more essential reason is an interesting and difficult problem. 
The purpose of the present paper is to give new estimation of -0 which is based 
on direct measurement of a macroscopic physical quantity, namely, the spin-glass 
susceptibility xSG. 

In this paper, we present two kinds of calculations. One is a c-dlculation of the 
nonlinear magnetic susceptibility x2, which is equivalent to the spin-glass susceptibility 
in a vanishing field. The data are analysed with the finite-size scaling. The other one 
is a calculation of two-point spin-glass correlation functions of finitesize systems. 
The data are analysed in the framework of the double-cluster approximations (DCA) 
113-151 combined with the coherent-anomaly method (CAM) 1161. Within the scope 
of Fisher’s finite-size scaling for two-point correlation, these two calculations are 
essentially equivalent to each other, and the exponents obtained through them should 
relate directly to the scaling exponent of the free energy. Indeed, the estimates are 
fully consistent with each other, -0 = 0.48(1), and also agree with the estimate 
(15) .  This fact suggests that finite-size correction to scaling is not so large in the 
present calculations, The estimates, however, are not compatible with the resutts 
(1.1)-(1.4) by other groups. 

2. Finite-size scaling and the droplet argument for nonlinear susceptibility 

The critical behaviour of the present model is characterized by one-parameter scaling 
(71. Although brief discussions about this problem have already been given in several 
articles [1,7], let us review them for the sake of completeness. 
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We do not have any rigorous proof for the algebraic, or power-law singularity 
of various quantities. Nonetheless it seems to be reasonable to assume it, since we 
have much numerical evidence as mentioned in the introduction. Let us assume the 
following scaling form for an arbitrary quantity Q: 

Q(T, H ,  L )  = L"Q(TL- ' ,  H L - @ )  (2.1) 

wnere T, H ana i are the temperature, the magnetic tieid and the system size 
respectively. Here we have assumed the critical temperature is zero, T, = 0. The 
scaling exponents 6' and 4 are believed to be independent of the quantity Q, because 
macroscopic physical quantities such as energy, specific heat, magnetization, magnetic 
susceptibility, nonlinear magnetic susceptibility 1171, etc, can be derived from the free 
energy through differentiation with respect to T and/or H. There are several reports 

the spin-spin correlation and chiralityxhirality correlation are described by different 
thermal exponents, us and uc, respectively. On the other hand, the exponent $Q 
takes varying values for different quantities. Let us denote $, simply by $, i.e. 

p j ,  ho.wev.ei, i;lat ;i fi.6tizteG mo;e.;s -whicii erhi'vii a iiiiia; pse tiafisitioa, 

f ( T , H , L )  = L @ f ( T L - ' , H L - @ ) .  (2.2) 

Here the symbol f denotes the singular part of the free energy per spin averaged 
over bond configurations. l b o  of the above exponents $, 6' and 4 are determined by 
the other under the two requirements below. 

By differentiating f four times with respect to H, we get an expression for the 
nonlinear magnetic susceptibility xz 

1 a4f x 2 ( T ,  H ,  L )  = --: 6 i3H = L " - 4 9 f 2 ( T L - ' ,  H L - " ) .  (2.3) 

Here we should note the following relation between the nonlinear susceptibility [17] 
and the spin-glass susceptibility at H = 0 

2 
(2.4) 

P3 
xz(T,O, L )  = -[(M4) GN - 3(M2)?IJ = O3 (5 - XSG) 

where 

M E X S ;  
i 

and 

Here we have used the gauge invariance of the system. Thus we obtain the scaling 
form for xSG at If = 0 

xsc(T,O, L )  - - P L * - 4 4  S ? ( ~ ~ - @ ,  - 0 )  - ~ * - 4 * + 3 8 2 ~ ~ ; ( ~ ~ - f l ,  0 ) .  (2.7) 
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Now we should note that the following two facts yield two equations between 0, 
4 and ZL. Firstly, owing to the local gauge invariance, we have the following exact 
expression of the linear susceptibility 

X ( T , O ,  L )  = P .  (2.8) 

'lb make this expression consistent with the scaling form 

(2.9) 
a 2 f  X ( T , N , L )  = -- = L + - ~ ~ ~ ( T L - ~ , H L - + )  a H 2  

we put 

y = ( 2 4 -  $)/S = 1. (2.10) 

Secondly, we require the uniqueness of the ground-state pair, which is an immediate 
consequence of the continuity of the bond distribution. We have 

(S,s,)* = 1 at T=O. (2.11) 

XSC(O>O, L )  cx L d .  (2.12) 

This leads to 

Comparing this expression with (2.7), we have 

$-44+30 = d .  (2.13) 

Thus we have obtained the 'one-parameter scaling' for xSc 

X s c ( ~ ,  H ,  L )  - L ~ x , ~ ~ ( T L - ~ , H L ~ / ~ - ~ ) .  (2.14) 

Now many other critical exponents are expressed by a single exponent. The 
exponent ySG which describes the divergence of the spin-glass susceptibility 

lim xSG(T.O, L )  0: TYsG (2.15) 
L-CC 

is expressed in terms of 0 as 

ysc = - d / S .  

The scaling form for the magnetization is given by 

(2.16) 

(2.17) 

(2.18) 

with 

6 = I - % @ / d .  (2.19) 
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The limiting case, T = 0, of (2.17) has been used in the previous analysis [12]. In 
the present paper we use another limiting case, H = 0, of (2.14). 

Next, let us see how the expression (2.7) is derived from Fisher’s finite-size scaling 
for two-point correlations, for later convenience. The scaling form of two-point spin- 
glass correlation is written as follows 

where Ri j  is the distance between the spins Si and Sj. Here we have assumed 
T, = 0 again. The spin-glass susceptibility is related with (2.20) as follows; 

where the symbol Sa denotes the central spin, and 

/? 11, ’.\‘*, J‘.?l*.\ = -‘* , - ( 2 - - n b  /” p n ) u - l q l )  d t ,  (L.LL,  

1 0  

Comparison between (2.14) and (2.21) yields K ( z )  = j & ( r , O )  with 

2 - q = d  and I l w = - e .  (2.23) 

Now the correlation (2.20) is written in the form 

[(SiSj)’]], C(TR;’) (2.24) 

and the scaling function j&(z. y) with y = 0 is given by 

(2.25) r =  &c(.,a) = z- ‘ ”  2 -’I C;( t )d i .  Ja 
The asymptotic behaviour of G(z)  in the region z >> 1 is known to be G ( r )  - 

exp(-kz”), where k is a positive constant. With the help of the droplet argument, 
the asymptotic behaviour in the region z << 1 can be predicted in the following form: 

(2.26) G(r) = 1 - c2; + o(2) 
where c is a positive constant. This leads to the expression 

Ssc:(T,O, L )  = L d ? S c : ( T L - 8 , 0 )  (2.27) 

?,it!? 

& c ( r , O ) a  1 - a z + o ( r )  (2.28) 

where a is a positive constant. The form (2.26) is derived as follows. 
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The correlation between Si and S, can be expressed by 

where +,(i) is the value of the spin at the site i in one of the ground-state configu- 
rations, +g, and Z,, is defined by 

(2.30) 

Here E ( + )  is the total energy of a spin configuration +, and the S,,'s are sets of 
spin configurations defined by 

S,, s {+I+ is a spin configuration; q($,$, )  > 0; +,(i)$(i) = i l ;  
+, ( j )+ ( j )  = i l l  (2.31) 

with 

If the temperature is low enough to satisfy 

T L - ~  << J (2.33) 

we can neglect the contribution from the excited states which contain more than one 
excited droplet. Then, the restricted partition functions Z,, can be approximated by 

z,, x (1 + ,-BE!n) (2.34) 

e - n s ( D )  j2.35j 

ien3co 
n ~ - 8 E .  A-, ? e  7 - y  

V. 
iEV;j@V 

2,- N e - O E g  x e-PE(n) (2.36) 
V. 

i @ V ; i € V  

(2.37) " - R F ~  P - 8 ~ i n )  
L-- N e - - Y  t e ? - \ - '  

D. 
iEV;iEV 

where E ( D )  is the excitation energy of a droplet V. Using the scaling form for.the 
distribution function of the excitation energy of droplets of size 1 ,  

P ( E , I )  'c A P ( E / l u )  (2.38) 
Tl 

with 

o < P ( o )  ~ i r n  P ( z )  < M 
Z - 0  

(2.39) 



Critical behaviour of the w EA model 4991 

we can evaluate these quantities as follows. Firstly, we have 

log Ri,  1 log b 
IT 1 d E P ( E , b " ) e - O E  
- 
n=o J O  

logR,,/logb 

(240) - - c I - 2  T c  -TRY. 0 bmB 8 : I  
n = 0  

where c' and c are positive constants. We have assumed here that, if and only if 
the size of a droplet including the site i is greater than R j j ,  it includes the site j .  
Similarly we have ~ . . ~  

E [e f lE3z t -IJ  IT ~ C T R ; ~ .  (2.41) 

Figure 1. Two sites separated ty the distance R and a droplet of size 1. 

Next, as for Z - -  and Z,, ,  we have 

and 

[ C + + l J  - 1 2 [ e - f l E ( v ~ ) ] J  zz c++ TL-@S (2.43) 

where 'PL is the largest droplet which does not include i or j .  Since we have assumed 
(2.33), the values of these four terms are small compared to unity, and we obtain 

11 1 + c++ - c+- - c-+ + C-- ) 2 1 
! ( s i s J ) 2 ! ;  = L \  1 + C++ + C+- + C-+ + C-- J 1 j 

2 1 - 8[~,-] IT I - c ~ ~ - . 8  ' I  (2.44) 

which gives the asymptotic form (2.26). 
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3. Calculations of the nonlinear susceptibility and finite-size-scaling analysis 

In the present section we develop scaling analysis for the zero-field spin-glass SUS- 

ceptibility. There are two methods for calculating this quantity; the transfer-matrix 
method and the Monte Carlo method. We have adopted the transfer-matrix method 
here, since it is very difficult to reach the scaling region by means of the Monte Carlo 
simulation [19]. 

It is difficult to calculate xSG directly from the definition of xsG 

?b obtain each correlation function ( S ; S j ) ,  we have to calculate the following quan- 
tity; 

where T,w is the transfer-matrix which corresponds to tracing out all the spins in 
the i,-th layer, and 1 denotes a 2L=dimensional vector all of whose elements are 
unity. The calculation of xsG along this line requires about N 2 / 2  operations for 
each bond-configuration. It is much better to use the formula 

xSG = - ( l /6N)[(M4) - 3 ( M Z ) ’ ] , .  (3.3) 

[(M4)], = 3 N 2  - 2 N  

Using the relation 

(3.4) 

we can further reduce the expression (3.3) as follows: 

1 
x S G  = - [ ( M 2 ) ’  2 N  - N 2 ] J  + 1. (3.5) 

We can use both the expressions (3.3) and (3.5) for the present purpose. The ex- 
pression (3.5) has an advantage that we do not have to calculate the fourth moment 
(M4). The calculation up to the nth order moment of M takes time proportional 
to n as is explained in the appendix. Thus the calculation through (3.5) takes only 
half of the computational time for (3.3). The right-hand side of (3.5) is, however, not 
self-averaging, that is, the ratio of these quantities before and after averaging over 
bond configurations 

( ( M 2 ) 2  - N 2 ) / 2 N  + 1 
lim 

N--m [ (kf2)2  - N 2 ] , / 2 N  + 1 

are not necessarily equal to unity. On the other hand, we have 

(2 /3 )  - { ( W )  - 3 ( M 2 ) ’ ) / 6 N  
lim 

N-m (2 /3)  - [(M4) - 3 ( M 2 ) 2 ] ~ / 6 N  = (3.7) 

which holds, because the quantity x2 = F’((M4) - 3 ( M 2 ) 2 ) / 6  is self-averaging. 
In other words, if the system is large enough, the deviation concerning the average 
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operation in (3.5) becomes larger than that in (3.3). This may result in large errors 
of estimates of xSG through the expression (3.5). This is a disadvantage associated 
with (3.5). We have performed calculations of momenu up to fourth order, and have 
used both the formulae (3.3) and (3.5). ' h o  estimates agree with each other within 
the error bars, and in every case the errors in the first estimation given by (3.3) is a 
little smaller than that in the second estimation given by (3.5). The ratio of the errors 
is, for example, about 1.1 - 1.3 for L = 4 - 10, and T = 0.1 - l . O J / k , .  In the 
present calculation we have used the data obtained through the expression (3.3). The 
algorithm for calculating higher moments is given in the appendix. 

Calculations have been done for L x L systems which have a periodic boundary 
in one direction and a free boundary in the other. The parameters adopted in the 
calculations are listed in table 1. In figure 2, scaled data is plotted. We can see that 
the behaviour near T = 0 can be explained, very well, by the asymptotic form (2.14). 
Figure 2(a) shows a scaling plot with 0 = -0.492, which gives the best fitting to the 
data for T < 0.6 and L 6. Figure 2(b) is the one using the values of 0 obtained 
through the domain-wall scaling [SI (0 = Os = -0.291). Only a glance at these 
two figures is enough to see that the present data is not consistent with the estimate 
0 = -0.291. 

( a )  1.0 

0.8 

N 0.6 

a" 
$ 0.4 

+L=4 +L=12 
XL=6 XL=14 
OL=8 1L=16 I-; OL=10 

t 

+ 
X t  

o x  
0 

iL=4 + L = l 2  
XL=6 X L = 1 4  
O L = 8  1 L = 1 6  

i 

+ 
X +  

TLo.492 T~0.291 

Figure 2. Scaling plots of spin-glass susceplibilily ,ysc(T,O, L )  wilh ((I) 8 = -0.492 
and (b) B = -0.291, respeclively. The slatistical errors of data points are Smaller fhan 
the size of symbols. 

In order to obtain the best estimate of 6' within the present data, we analysed 
them using the method of least squares. The fitting function we used is similar to 
(2.28), but includes two more higher-order terms 

x ~ ~ L - ~  = 1 - (az + bx2 + c z 3 )  (3.8) 

where x TL-e .  
We have calculated the optimal value of 8 ,  for which the chi-square is minimum. 

We have tried several selections of data in order to see how large the finite-size 
correction to scaling is. When we adopt the data for 0.1 < T < 0.6, 4 < L < 16, 
we get 

- e  = 0.524(4) s = 2.16 ( T  < 0.6; L 3 4 ) .  (3.9) 
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lsblr 1. The physical paramelem and numben of samples adopted in calculations of the 
zem-field qin.glass susceplibilily X S G .  

L T Net., L T N,,, L T N,,, 

4 0.1 1 0 0 0 0 0 0  
4 0.2 1000000 
4 0.3 1000000 
4 0.4 1000000  
4 0.5 1 0 0 0 0 0 0  
4 0.6 500000 
4 0.7 500000 
4 0.8 500000 
4 0.9 500000 
4 1.0 500000 

6 0.1 
6 0.2  
6 0.3 
6 0.4 
6 0.5 
6 0.6 
6 0.7 
6 0.8 
6 1.0 

10 0.1 1000004 12 
10 0.2 1000000  12 
10 0.3 l 0 0 0 0 0 0  12 
10  0.4 1 0 0 0 0 0 0  12  
IO 0.6  30000 14 
10 0.8 3000  14 
IO 1.0 3000 14 

14 

0.1 
0.2 
0.3 
0.4 
0.1 
0.2 
0.3 
0.4 

1000000 8 0.1 I O O O O O U  
1000000 8 0.2 1000000  
1000000 8 0 .3  1000000 
1000000  8 0.4 1 0 0 0 0 0 0  
1000000 8 0.6 60 000 

100000 8 0.8 I O  000 
100000 8 1.0 1 0 0 0 0  

50 000 
50 000 

1000000 16 0.1 30 000 
lOOOU00 16 0.2 30000 
1000000 16 0.3 3 0 0 0 0  
1 0 0 0 0 0 0  16 0.4 30 000 

100 000 
100000 
100 000 
l 0 0 0 0 0  

Here S is the normalized chi-square defined by 

(3.10) 

where n is the number of the data points and m is the number of the fitting pa- 
rameters in the function FE<. The figures in parentheses in (3.9) are estimates of the 
statistical errors which were obtained through the method of least-squares. When we 
adopt only the data for 0.1 < T < 0.6 and 6 < L < 16, we have 

- 0 = 0.492(5) S = 1.19 ( T  < 0.6; L > 6) .  (3.11) 

For other selections we have obtained the following results: 

- e = 0 . 4 7 q i o )  s = 1.06 ( T  < 0.6; L > 8 )  (3.12) 
- B = 0.470(16) S = 1.01 (T < 0.6; L > 10) (3.13) 
- e = 0.490(40) s = 1.10 ( T  < 0.6; L 2 12).  (3.14) 

Further reduction of the number of the data points has given meaningless results. 
We should note that the error estimates here do not include the systematic error due 
to the finite-size effect. We can see that all the above estimates except for the first, 
(3.9), agree with each other within a margin for statistical error, and the values of 
the normalized chi-square S seem reasonable (near unity). From the above results, 
we conclude 

- e  = 0.48(1). (3.15) 

"his value agrees with our previous estimate -0 = 0.476(5) (or 0.51(4)) within the 
limit of statistical error. 
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4. CAM analysis of mean-field data 

One difficulty in applying the finite-size scaling analysis to small clusters lies in the 
existence of finite-size correction to scaling. For example, there is ambiguity of the 
definition of the cluster size L in the finite-size scaling method: the system size 
may be defined by the edge length, by the number of sites on the edge, or by the 
total number of sites N as L G " I d .  The difference between them can affect the 

Such a type of correction may be expressed through the replacement of L by a 
continuous function g( L ) .  The coherent-anomaly methcd (CAM) [16] overcomes the 
difficulty as seen below. 

If one measures a quantity Q(T,O, L )  at a temperature, say To, varying the 
system size L,  but keeping the relation 

'3yn,."a"+ Prtims,:,." ,-,."":,la-"l.l.. ...L ".. "Â ..* .L̂  A".,. L-".-. ....I.-- "...",, .-,CtD..... 
I A ~ L L Y L L L  WUILI-LLY~I C V ~ ~ L Y C ~ ~ U ~ ~ ,  WUGU WG auup LUG uata iiuiii I ~ L I I C ~  a u m u  J ~ L C U L ~ .  

ToL-u =constant ( 4 4  
(2.1) is followed by 

( 4 4  * O l e  Q(To,O, L )  0: To . 
The exponent +B/B is nothing but the one which describes the singularity of the 
quantity in the thermodynamic limit; Q(T,O,oo) 0: T * Q / @ .  Note that we eliminate 
the system size L from (4.1) by making the use of (4.1). It has been shown [16] that 
some systematic series of mean-field solutions T,,,(L) satisfy the condition (4.1) with 
To = Tmf. The double-cluster approximation (DcA) [1>15] is especially known to be 
tractable. 

The detail of the formulation of the double-cluster approximation for spin glasses 
has been presented elsewhere [15]. Here we briefly review it emphasizing the scaling 
property [14]. Consider two clusters of size L A  and L B .  We apply a weak magnetic 
field H to the bulk of them and an effective field Heff  to the boundaries. We require 
the consistency condition [ ( S o ) l l J  = [ ( & , ) ; I J  to hold, where the symbol ( . . . ) A  

denotes the thermal average with respect to the Hamiltonian of the system A. The 
instability occurs at the temperature To( L A ,  L B )  which satisfies the equation [15] 

C(TD,O,LA)= C(Tn,O,LB).  (4.3) 

The subscript D indicates that TD is the solution of the double-cluster approximation. 
The surface susceptibility C in (4.3) is defined by 

C ( T , O , L )  E [(SOSi)21J (4.4) 
,€an 

where the summation runs over the boundary sites of the cluster. 

provided that 
We can see [14] that the solution To satisfies the relation (4.1) with To = T,, 

A L =  ILA - LBI < L A , L B .  (4.5) 

Assuming this condition we hereafter abbreviate the notation To( L p ,  L E )  to T,(L). 
Utilizing Fisher's finite-size scaling form (2.20), the surface susceptibility is estimated 
as 

C ( T , O , L )  0: L1-nG(TL-e) .  (4.6) 



49% N Kawashima el a1 

The equation for TD, under the condition (4.5), is reduced to the following expression, 
taking A L  up to the first order; a E / a L  = 0 at T = T,(L), or 

0 = -(a/OL)logC(TD,O,L) = L-'D(T,L-') (4.7) 

where 

The solution xn of the equation D ( x n )  = 0 gives the relation 

To(L)L-'  = z,,. (4.9) 

Therefore we. can observe the behaviour (4.2) by adopting To( L)  as the temperature 

Now we discuss here the relation (4.2) concretely for the two quantities, namely 
the critical amplitude FsG of the mean-field susceptibility, and the bulk susceptibility 
x S G .  First, the critical coefficient xsc has been found [16] to follow the form (4.2). 

[15] is, up to the first order of A L, expressed as follows: 

TO. 

n , p  Z&?fi-fi&j sn*-ccptib;liT ic th.- f:zfip*,c:k of &sb!-&s'-: qp:=gmati=:: 

(4.10) 

Here we simplify the notation as xsG(T,O, L A )  = x s c ( A ) .  The critical coefficient 
sisc defined by 

shows the following behaviour: 

- X S G  o( T;7Sa+lH(zn) 

with 

(4.11) 

(4.12) 

(4.13) 

It should be stressed here that the behaviour ( 2) remains unchanged even after we 
replace the variable L by ( L  + a).  This type of correction to the system size L may 
exist because of the ambiguity of the definition of i. ?"ne reiatiom (4.9j and (4.iGj 
are now changed to the forms TD( L + a)-' = xn and 

(4.14) 
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and still we obtain the behaviour (4.12), owing to the elimination of the system size. 
Next, the bulk susceptibility xsc also behaves as (4.2), that is 

This form is compatible with a more general type of correction to L than the one 
mentioned below (4.13); for example the replacement of L by L( 1 + aL-W f . .). 

'WO of the present authors I151 analysed the two-dimensional fJ model, using 
the data {T,,X,,}, and found that the clusters only up to 4 x 4 are enough to 
obtain such an estimate of ySG as is consistent with the ones by other authors. In 
the present paper we have used the clusters up to 6 x 6. The pairs of clusters used in 
the doublecluster approximation and the resulting data are listed together in table 2. 
The error estimation here has been done as follows. We have solved the equation 
(4.3) using the correlation data averaged over No samples to obtain TD and Z (or 
xA, xs). The number N o  is restricted by the amount of the computer memory and 
the job CPU-time limit. We have repeated this job N I  times, renewing the set of 
samples. Finally, we have obtained the average and the error from the N I  set of 
data. The total number of samples No N I  for each case is listed in table 2 

lsble 2. ?he pain of clu~ten used in the double-clusler approximation and the resulu; 
the mean-field critical lemperalure, lhe bulk susceptibility of lhe clusten, and lhe ailical 
mefficienl of the mean-field susceplibilily. The figures in parenlheses in Ule fin1 and 
second columns show the muod numben of samples wilh the unit 10'. nlhe figures in 
parentheses in the other columns show lhe error estimates. 

cluster A cluster B TO 

2 x 2(38) 
2 x 3(8) 
3 x 3(48) 
3 x 4(13) 
4 x 4(10) 
4 x 5(6) 
5 x 5(6) 
5 x 6(7) 

2 x 3(10) 
3 x 3(24) 

4 x4 (12 )  

2 x 2(9) 

3 x 4(5) 

4 x 5(37) 
5 x 5(34) 

2 x 3(38) 

3 x 4(151 
4 x 4(6) 
4 x 5(6) 

5 x 6(4) 
6 x 6(7) 

3 x 4(1)  

3 x 3(3)  

5 x 5(4) 

3 x 3 ( 3 )  

4 x 4(1) 
4 x 5 ( 5 )  
5 x 5(6) 
5 x 6 ( 2 )  
6 x 6(3) 

0.95866(40) 
0.8056(12)  
0.79549(55) 
0.7158(29) 
0.7167(13) 
0.658 6(18) 
0.6551(29) 
0.6145(19) 
0.874 82(74) 
0.8006(13) 
0.7527(17) 
0.714 92(80) 
0.68425(69) 
0.655 4( 10) 
0.6351(17) 

2.11986(56) 
3.1880(31) 
4.4905(25) 
5.745(20) 
6.904(12) 
8.767(23) 
10.456(49) 
12.475 (4 1 )  
2.2284(10) 
3.2002(33) 
4.6729(84) 
5.751 27(59) 
7.2008(69) 
8.807(13) 
10.782(32) 

2.83824(63) 

5.260 Z(29) 
6.911(24) 
8.071(13) 
10.401(26) 
11.650(55) 
14.056(47) 
4.1768(13) 
5.2265(49) 
6.591(12) 
8.091 3(81) 
9.9932181) 
11.640(16) 
13.538(41) 

4.4477(38) 

- 
XSG 

2.34737(72) 

3.5136(43) 
4.6889(65) 
4.683(12) 
6.025(23) 
6.081(32)  
7.476(31) 
2.826 5(16) 
3.4680(64) 
4.053(10) 
4.6926(63) 
5.3186(39) 
6.052(15) 
6.717(23) 

3.4377(55) 

First, we have analysed the series {To,ZsG] by the method of least squarest. The 
log-log plot of the data is shown in figure 3. We have concluded that the condition 
(4.5) is practically satisfied. This conclusion has been drawn from the following fact, 
we have obtained the two series of data points; one Cor the pair of clusters L ,  x L ,  

t In the least-squares analysis, the horizontal coordinate of lhr data points nerd to be given accurately. 
Owing to the necessity, we have wed the data {To) as the lhorizonlal coordinates wilhoul erron, while 
we have added lhe properly ra led ermn along the abscissa o(TD) x (^(SG - I)zsG/Tr, lo the ermrs 
along the ordinate o(ZSG) .  
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and L ,  x (L, + l ) ,  the other for the pair L ,  x L ,  and ( L ,  + 1) x (L, + 1). We 
have observed that there is little discrepancy between the curves of the data sets 
{TD,FsG} for the two series. This means the correction term of the order ( A L ) *  is 
considerably small. 

8 I " ' ' I '  " ' T " "  
7 \  

6b\ 4 

Figure 3. Ihe log-log plots of TO 
vs pso. The ermrs of the data 
are "parable with the size of 
the symbols. 'Ihe solid line shows 
lhe estimate (4.20). m e  dashed 
line is drawn for mmparison so 
that the slope may correspond to 
the domain-wall scaling eslimate 

Ix 4 

3 

5 1 ,  ';;;\,,,I 
0.8 0.7 0.8 0.9 1 B = 0.291 171. 

T E  
Since the data as a whole show apparent systematic deviation from the linear 

behaviour (4.12), we have tried to fit to all the data the function with higher-order 
mrrection terms 

N ," ,L\ (" I", 
- -F- ,I--7sotn 
X S C  - L c n l D  

n=1 

The result with N = 3 is 

ySG = 4.56(54) 
(all the data with N = 3). 

S = 0.343 
(4.17) 

Further increase of N has resulted in meaningless estimates with large errors. Then 
we have tried the fitting with N = 1 to selected data. The results are 

YSG = 3.97(5) S = 0.625 (TD < 0.76) (4.18) 

ysG = 4.00(6) S = 0.614 (To < 0.72) (4.19) 
ySG = 4.13(10) S = 0.204 (To < 0.69) (4.20) 
YSG = 4 ~ )  S = 0.197 (TD < 0.66). (4.21) 

Further reduction of the number of data points has resulted in a large error. Owing 

of data points. Since the d u e s  of the normalized chi-square S are similar for (4.20) 
and (4.21), we consider that the series converge to the behaviour (4.12) in the region 
TD < 0.69, which is specified by the six data points denoted by *'e'' in figure 3. 

Next, we have analysed the data { TD, xsG( A)} and {To, xsC( E ) } .  The plots Of 
the data show even-odd-oscillatoq deviation from the expected behaviour. This fact 

.̂  ^___._I^. ._ _I^..._.__ .L̂  .._.-.A. . ^__ I_  .^ : ̂̂ _^^ ̂^  ^^ -..A .I.̂  .....,.l..3r 
LU LUG > p l C I I t d l l L  UGVldllUn, Ult: ChIlmdIC LCllUS LU LIILICdhC 63 WG IGUULC LllC l lU l l lYCI  
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may be caused by the irregularity due to specific shapes of each clustert. ?he series 
{T0 ,xSG(B) }  of the pairs L, x L, and (Z, + 1) x ( Z y  + 1)  show the smoothest 
behaviour (figure 4). We have fitted the function (4.15) to this series rejecting only 
the data (2 x 2)-(3 x 3), which deviates apparently from the linear behaviour. The 
result is 

YSG = 4.13(5) S = 5.43 (TD < 0.81) (4.22) 

or the solid line in figure 4. This estimate is cnnsistent with (4.20). The normalized 
chi-square is greater than unity, which is caused by the oscillatory behaviour of the 
whole series. This may imply a hidden systematic error in this estimation. 

I ' ' " I " " I "  " I " "  1 ' ' ' .  

Figure 4 m e  lag-log plou of 
T , \ ~ , ~ s G ( B ) .  ?heemnollhe 
data are mmparable wilh lhe size 
of the symbols. Only the wries 
with the pin of L,  x L ,  and 
( L =  + 1 )  x ( L v  + 1 )  are shown. 
The solid line corresponds 10 lhe 
Elh" (4.22). while the dashed 
line, 0 = 0.291 171. 

Based on the estimates (4.17), (4.20) and (4.22), we conclude the present section 
with the following estimate (the solid line in figure 3) 

ySG = 4.13(10) or - f3 = d / y S G  = 0.484(12). (4.23) 

This agrees with the estimate (3.15) very well. For comparison we have drawn in figure 
3 and figure 4 the dashed lines corresponding to the domain-wall-scaling estimate 
-0 = -Os = 0.291 [7]. In both the figures, the present data is not consistent with 
these lines. 

5. Discussion and summary 

In the present paper, we have obtained new estimates of the exponent -0 E I/" 
through calculations of the zero-field spin-glass susceptibility, in order to confirm the 
previous estimation through the calculation of the zero-temperature magnetization. 

We have performed two kinds of calculations of xso. Both of them have been 
performed by the numerical transfer-matrix method. The first is the direct calculation 
of the nonlinear susceptibility. The exponent l / u  has been obtained through the 

t On \he nher hand, the data {TD,&} give rather smooth behaviour. " g h  the r e a m  of the 
difference is not clear, ut suggest thal the irregularity 01 the function G ( r )  may be partially rancelled 
between the denominator and the numerator of (4.13) 
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finite-size-scaling analysis assuming the asymptotic behaviour of & predicted by 
the droplet argument. The data confirm the prediction well. The critical exponent 
obtained in this scheme is 

- e =  I / ~ = Q . ~ S ( ~ ) .  (5.1) 

The second is the mean-field calculation analysed by the coherent-anomaly 
,I.*,,,"". 1 1 1 1  lllll.l"U w ""IIL" "U L I O . 1 1 ,  0 IIII.LC-oI&C acarrrrE, LVllll ,L.LU,, WIIIC,, a 
compatible with (2.14). The exponent estimate -,SG thus obtained is 
m a r l r n A  Thn math-rl :r h o r n r l  nn IXehnr'r fin:+- c:-- -,.,.I:-- F-r- I I  ... L:-L ' 

ySG = 4.13(10) ?x 2/0.484(12). (5.2) 

This is fully consistent with (5.1) via the scaling relation (2.16). 
Generally speaking, we cannot objectively exclude the possibility that further cal- 

culation may reveal a systematic error of the present estimates. We believe, however, 
that finite-size correction does not affect the present results so much. There are three 
reasons for this. Firstly, both the scaling plot and the CAM plot are fitted well. This 
fact suggests that irregularity caused by specific shapes of the clusters is irrelevant in 
the present estimates. Secondly, the present two estimates are consistent with each 
other, while the estimate in section 4 is expected to be partly free from finite-size cor- 
rection. This suggests that the correction to scaling which can be expressed in terms 
of the simple replacement of L by g( L)  is irrelevant here. Thirdly the estimates (5.1) 
and (5.2) agree with the previous estimate (1.5) [U]. Note that the present estimation 
and the previous one are complementary to each other. The previous study dealt with 
the criticality at T = 0 and H -+ 0, while the present one, at H = 0 and T -+ 0. 

Since the exponents Y and ysc estimated here are directly related to the 
temperature-scaling exponent 8, the disagreement between our results and the ones 
by other authors (1.1) [SI and (1.2) [9] suggests that the assumption 0 = 8, in the 
domain-wall scaling does not hold in the present model. It is also puzzling that our 
results are inconsistent with the previous estimates [lo, 111 through analyses of eigen- 
values of transfer matrices. We believe that more consideration on the effect of the 
fractal dimension of the domain walls is required for more complete understanding. 
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Appendix. Calculation of higher-order moments through the transfer-matrix method 

In this appendix, we describe an algorithm of the transfer-matrix method for high- 
order moments. For simplicity of our explanation, let us consider a two-dimensional 
lattice of size L ,  x L,. The extension to higher-dimensional systems is straightfoward. 
Our task is to calculate 

Z,zTr(e-@'M') ( f i = 0 , 1 , 2 , 3  ,...) (A 1) 





and Siv is an operator which transforms ey into SKY, where S 3 E?=, Si. The 
symbol 1 stands for the vector all of whose elements are unity. The algorithm for 
calculating Z , ,  Z , ,  . . . and 2, is as follows. 

(2) For a = 1 to a = p ,  do 
(1) w @ )  -+ F, If, 1. 

(3) For i, = 0 to i, = L, ,  do 
(a) For a = 0 to a = p, do 

tu(") + F i 2 + 1 H i y + , K v ~ ( a ) .  

@ ) F o r  a = 1 to a = p, do 

(4) For a = 0 to a = p ,  do 

For a finite p, the most time-consuming part of the above procedure is obviously step 
3(a) if L ,  is large. Therefore the computational time is proportional to p,  namely 
the highest degree of the moment which we wish to calculate. 
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