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Critical behaviour of the two-dimensional EA model with a
Gaussian bond distribution
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Department of Physics, Faculty of Science, University of Tokyo, Hongo, Bumnkyo-ku,
Tokyo 113, Japan

Received 31 March 1992

Abstract. The spin-glass susceptibility of the two-dimensional EA model is investigated
by the numerical transfer-mairix method. It is found that the droplet picture gives a
fairly good description of the critical behaviour. The critical exponent § = -1/v is
estimated as 8 = ~0.48(1), both through finite-size scaling and through the coherent-
anomaly method ©amy. The present estimate is consistent with our previous estimate
@ = —0.476. These values do not, however, agree with the stiffness-exponent estimate
85 through the domain-wall scaling. This disagreement suggests that the assumption
§ = f#3 in the domain-wall scaling does not hold.

1. Introduction

Although the spin-glass problem has attracted interest from many researchers, the
nature of the low-temperature phase of finite-dimensional spin-glass systems remains
unclarified. For instance, it has not been settled yet whether the P(g¢) of Parisi
has non-trivial structure for the three-dimensional +J model below the critical tem-
perature. There are two main pictures of it which may explain correctly the low-
temperature phase of the model. One is the mean-field picture, according to which
we can obtain numerous thermodynamic states and the non-trivial structure of P(g).
This picture also suggests the existence of a phase transition in the presence of a mag-
netic field. The other is the so-called droplet picture [1). In this picture there is only
one pair (or, at most, a finite number of pairs) of thermodynamic states, and P{g)
consists of a finite number of §-peaks. In addition, the phase transition is considered
to be absent in the presence of a uniform field in contrast to the mean-field picture.
Besides these two pictures, some numerical evidences suggest another possibility. For
example, several numcrical calculations [2-5] show that the variance of P(gq) may be
vanishing even in the case where T < T, and H = 0.

As for the two-dimensional Edwards—Anderson (EA) model with a symmetric
bond-distribution, few researchers doubt that a finite-temperature phase transition
does not occur. A number of numerical works have been done on the criticality of
the two-dimensional +.J mode] at T' = 0. For the +J model, numerical calculations
[6] have given several estimates for the exponents v, i and g, which are consistent
with each other.

As for the two-dimensional modei with a Gaussian bond distribution, there is
disagreement between estimates of the exponent v so far obtained. In the domain-
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wall-scaling argument [7], the absolute value of the stiffness exponent 6g which char-
acterizes the size dependence of the domain-wall energy is assumed t0 be equal to
the inverse of the critical exponent . The domain-wall encrgy here is defined by
the difference in ground-state energies of two systems which differ from each other
only in their boundary condition, a periodic boundary condition is applied to one
system and an antiperiodic boundary condition to the other. The index 65 has been
estimated through numerical caiculations as follows [8, 9

—0; = 0.291(2) (8] (1.1)
= 0.281(5) [9]. (1.2)

Estimation of v(= —1/8) has also been done by calculating the largest eigenvalues
in the even and odd eigenspaces of transfer matrices [10, 11]. The results are

p(=~1/8) = 2.96(22) ~ 1/6.34  [10] (13)
=4.2(5)~1/024  [11]. 1.4)

It should be noted that all the above estimates are not bascd on direct calculations of
macroscopic physical quantities, or derivatives of the free energy. Recently, two of the
present authors calculated [12] zero-temperature magnetization for various strength
of the magnetic field. The finite-size scaling analysis on the resulting data yielded

— 0= 0.476(5). (1.5)

The same data yielded —@ = 0.51(4} when an additional correction term is included
in the fitting function. All the above estimaes of 8 apparently do not agree with each
other within the limit of statistical error. Whether this disagreement is due to finite-
size effect or due to a more essential reason is an interesting and difficult problem.
The purpose of the present paper is to give new estimation of —@ which is based
on direct measurement of a macroscopic physical quantity, namely, the spin-glass
susceptibility xgq-

In this paper, we present two kinds of calculations. One is a calculation of the
nonlinear magnetic susceptibility x,, which is equivalent to the spin-glass susceptibility
in a vanishing field. The data are analysed with the finite-size scaling. The other one
is a calculation of two-point spin-glass correlation functions of finite-size systems.
The data are analysed in the framework of the double-cluster approximations (DCA)
[13-15] combined with the coherent-anomaly method (CAM) [16]. Within the scope
of Fisher’s finite-size scaling for two-point correlation, these two calculations are
essentially equivalent to cach other, and the exponents obtained through them should
relate directly to the scaling exponent of the free energy. Indeed, the estimates are
fully consistent with each other, —6 = 0.48(1), and also agree with the estimate
(1.5). This fact suggests that finite-size correction to scaling is not so large in the
present calculations. The estimates, however, ar¢ not compatible with the resuits
{1.1)~(1.4) by other groups.

2. Finite-size scaling and the droplet argument for nonlinear susceptibility

The critical behaviour of the present model is characterized by one-parameter scaling
{7]. Although brief discussions about this problem have already been given in several
articles [1,7], let us review them for the sake of completeness.
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We do not have any rigorous proof for the algebraic, or power-law singularity
of various quantities. Nonetheless it seems to be reasonable to assume it, since we
have much numerical evidence as menticned in the introduction. Let us assume the
following scaling form for an arbitrary quantity Q:

Q(T,H,L)y= L¥2Q(TL™%, HL %) ' @.1)

where T, H and L are the temperature, the magnetic field and the system size
respectively. Here we have assumed the critical temperature is zero, 7. = 0. The
scaling exponents 6 and ¢ are believed to be independent of the quantity ¢}, because
macroscopic physical quantities such as energy, specific heat, magnetization, magnetic
susceptibility, nonlinear magnetic susceptibility [17], etc, can be derived from the free
energy through differentiation with respect to 7' and/or H. There are several reports
{18}, howevei, that in some frustrated models which exhibii a chital phase transition,
the spin-spin correlation and chirality—chirality correlation are described by different
thermal exponents, v, and v, respectively. On the other hand, the exponent v,
takes varying values for different quantities. Let us denote v, simply by <, ie.

S(T,H,LY= LY f(TL %, HL"?%). 2.2)

Here the symbol f denotes the singular part of the free energy per spin averaged
over bond configurations. Two of the above exponents v, ¢ and ¢ are determined by
the other under the two requirements below.

By differentiating f four times with respect to H, we get an expression for the
nonlinear magnetic susceptibility x,

1 99
o T H, D)= -2 2

v L¥=% 3, (TL™%, HL %), (2.3)

Here we should note the following relation between the nonlinear susceptibility [17]
and the spin-glass susceptibility at ff = 0

(0,0 = Tty s, =00 (5 -xa) @9
where
M=), 2.5)
and
Xsa = 3 SIS, @6
¥

Here we have used the gauge invariance of the system. Thus we obtain the scaling
form for xg at H =0

xsa(T50, L) ~ =T LYW 3 (TL™Y,0) ~ LY~*F90%, (TL™*,0). Q.7
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Now we should note that the following two facts yield two equations between 6,
¢ and 4. Firstly, owing to the local gauge invariance, we have the following exact
expression of the linear susceptibility

x(7T,0,L)=p. (2.8)
To make this expression consistent with the scaling form

af
dH?

x(T,H,L) = — = LY TL, HL™%) (2.9)
we put

vy=(20-v)/0=1. (2.10)

Secondly, we require the uniqueness of the ground-state pair, which is an immediate
consequence of the continuity of the bond distribution. We have

(5;8;=1 at T =0. (2.11)
This leads to

XsG(0,0, L) o L, (2.12)
Comparing this expression with (2.7), we have

Y —4p+ 30 =d. (2.13)
Thus we have obtained the ‘one-parameter scaling’ for xgq

xsa(To H, L) ~ L%sa(TL™ HLY*?). (2.14)

Now many other critical exponents are expressed by a single exponent. The
exponent ~¢, which describes the divergence of the spin-glass susceptibility

litn xgg(7T.0, L) x T (2.15)

L—oa
is expressed in terms of 0 as

Ysq = —d/6. (2.16)
The scaling form for the magnetization is given by

m(T, H, L) = 5% = [~4/2(TL-?, H L4/2-9) 2.17)

o« HE (T=0,L— o) (2.18)

with

5=1-26/d. (2.19)
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The limiting case, T = 0, of (2.17) has been used in the previous analysis [12]. In
the present paper we use another limiting case, H = 0, of (2.14).

Next, let us see how the expression (2.7) is derived from Fisher's finite-size scaling

for two-point correlations, for later convenience. The scaling form of two-point spin-
glass correlation is written as follows

[(S:5,)%, = RV G(TRYY) (2.20)

where R;; is the distance between the spins S; and S;. Here we have assumed
T, = 0 again. The spin-glass susceptibility is related with (2.20) as follows;

xsa(T,0, L) Z[ i ; ]J—Z[ 2].{

1/v
| ;Vf Rd"l“% = L=TK(TLV") " (221
]

where the symbol S, denotes the central spin, and

T
{2} = p—(2-m¥ f 1(2=mv =19y 0

Fin Ko 1o )Y
iywg LI LU \L.L.’.}
0
Comparison between (2.14) and (2.21) yields K'(x) = Xgg(x,0) with
2-n=d and 1/v = -8, (2.23)
Now the correlation (2.20) is written in the form
[(S:5;)%; =~ G(TR) (2.24)
and the scaling function Xgg(x,y) with y = 0 is given by
PR, die {* JUR: 7 T -
Xsglx,0) = 2 j 175G di. (2.25)
0

The asymptotic behaviour of /(=) in the region « > 1 is known to be G(z) ~
exp{—kz"), where k is a positive constant. With the help of the droplet argument,
the asymptotic behaviour in the region = < 1 can be predicted in the following form:

Gle)=1—cx+ofx) (2.26)

where ¢ is a positive constant. This leads to the expression

Xso (7,0, L) = L%sq(TL™Y,0) 2.27)

Xsa(®,0) o« 1 - az + o(x) (2.28)

where « is a positive constant. The form (2.26) is derived as follows.
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The correlation between S; and 5; can be expressed by

Zy -2, ~F ,+Z__
Zyv+ 2 2 +Z .

(8:5;) = v, (i) ,(5) (2.29)

where () is the value of the spin at the site ¢ in one of the ground-state configu-
rations, ., and Z, , is defined by

Zyp= Y e PEW), (2.30)
YES++

Here E(1) is the total energy of a spin configuration 1, and the S, .’s are sets of
spin configurations defined by

Sy = {t{¥ is a spin configuration; q(v, ;) > 05 ¥ (i)w(i) = £1;
Y, (J)w() = £1} (2.31)

with

q(v, ') = %Zw(i)w’(i). (2.32)

If the temperature is low enough to satisfy
TL < J (2.33)

we can neglect the contribution from the excited states which contain more than one
excited droplet. Then, the restricted partition functions Z, . can be approximated by

Z,, ~e BBy (1 + > e_ﬂE(D)) (2.34)
D
gD D
> -8R, . X ~AE(D) P
b_+’Z€" ¥ X L L= {£.33)
iE'D?fE'D
Z, ~ePBix N~ o FED) (2.36)
iE‘DE'E’D

o~
™
[¥%]
o>,

where E(D) is the excitation energy of a droplet P. Using the scaling form for the
distribution function of the excitation energy of droplets of size !,

P(E,1) ~ —T%P(E/l‘?) 2.38)

with

0< P(0)= liny Plry < (2.39)
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we can evaluate these quantities as follows. Firstly, we have

[C_yly =[Pz ],= 3 e #E®

-
€D gD
log Ri;/logh
~ Z / dEP(E,b")e~ P
|ogR"J‘/logb
o~ C’bTTe ~ g-TR;f (2.40)
=0

where ¢’ and c are positive constants. We have assumed here that, if and only if
the size of a droplet including the site i is greater than R it includes the site j.
Similarly we have

IJ’

[Cooly =[ePEeZ, ], = LT R @41)

| J
- @

Figure 1. Two sites separated by the distance R and a droplet of size 1.

Next, as for Z__ and Z +4» We have

log L/ logb T
(=52 1= 3 e _pgpm=e T Q&)
n=log Rflogb
and
[Cepls—1= [e_ﬂE(DL)]J o~ c++TL_6S (2.43)

where D, is the largest droplet which does not include ¢ or 7. Since we have assumed
(2.33), the values of these four terms are smail compared to unity, and we obtain

(GGt Y]
AN L YU J OIS SO
~1-8[¢,), ~1—cTR (2.44)

1(5,5;7]

LA

which gives the asymptotic form (2.26).
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3. Calculations of the nonlinear susceptibility and finite-size-scaling analysis

In the present section we develop scaling analysis for the zero-field spin-glass sus-
ceptibility. There are two methods for calculating this quantity; the transfer-matrix
method and the Monte Carlo method. We have adopted the transfer-matrix method
here, since it is very difficult to reach the scaling region by means of the Monte Carlo
simulation {19].

It is difficult to calculate xg; directly from the definition of x4q

Xsg E %Z[(Sisj)z]_,. 3.1
ij

To obtain each correlation function (S; S;), we have to calculate the following quan-
tity;
Zy; <=NTy Ty - T; ST, T, ST - Tl (3.2)

JySitiy-1"

where T; is the transfer-matrix which corresponds to tracing out all the spins in

the z'y—th layer, and 1 denotes a 2%~ dimensional vector all of whose elements are
unity. The calculation of xg. along this line requires about N?/2 operations for
each bond-configuration. It is much better to use the formula

Xsg Z%_(lfﬁN)[<M4}"’3(M2)2]J' (3.3)
Using the relation
[(MH], =3N*=2N (3.4)

we can further reduce the expression (3.3) as follows:

XsG = 2—1ﬁ[<M2)2 - N?, 4+ 1. (3.5)

We can use both the expressions (3.3) and (3.5) for the present purpose. The ex-
pression (3.5) has an advantage that we do not have to calculate the fourth moment
(M*). The calculation up to the nth order moment of M takes time proportional
to n as is explained in the appendix. Thus the calculation through (3.5) takes only
half of the computational time for (3.3). The right-hand side of (3.5) is, however, not
self-averaging, that is, the ratio of these quantities before and after averaging over
bond configurations

({(M%H2 - NH /2N + 1

i 3.6
;\lr'l"m [(M2)2 = N2, /2N + 1 -6)
are not necessarily equal to unity. On the other hand, we have
2/3) — {(M*) - 3(M*)?} /6N
Lo (2/3) = (M%) = 3(M2) /6N )

N=ro (2/3) = [(M*) - 3{(M?)?]; /6 N

which holds, because the quantity x, = 8°((M?*) — 3{(M?*}*}/6 is sclf-averaging.
In other words, if the system is large enough, the deviation conceming the average
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operation in (3.5) becomes larger than that in (3.3). This may result in large errors
of estimates of xgg through the expression (3.5). This is a disadvantage associated
with (3.5). We have performed calculations of moments up to fourth order, and have
used both the formulae (3.3) and (3.5). Two estimates agree with each other within
the error bars, and in every case the errors in the first estimation given by (3.3) is a
little smaller than that in the second estimation given by (3.5). The ratio of the errors
is, for example, about 1.1 ~ 1.3 for L =4~ 10,and T = 0.1 ~ 1.0J/kp. In the
present calculation we have used the data obtained through the expression (3.3). The
algorithm for calculating higher moments is given in the appendix.

Caiculations have been done for L x L systems which have a periodic boundary
in one direction and a free boundary in the other. The parameters adopted in the
calculations are listed in table 1. In figure 2, scaled data is plotted. We can see that
the behaviour near 7 = 0 can be explained, very well, by the asymptotic form (2.14).
Figure 2(a) shows a scaling plot with & = —0.492, which gives the best fitting to the
data for T < 0.6 and L > 6. Figure 2(b) is the one using the values of ¢ obtained
through the domain-wall scaling [8] (# = 6; = —0.291). Only a glance at these
two figures is enough to see that the present data is not consistent with the estimate
& = —-0.291.

{a) 10 F (& " — T 7]
! +L=4 +L=12 | ] [ % +L=4 +L=12| ]
08 — XL=8 ®L=14|-] [ o+ XL=6 HL=14 |]
' OL=8 #L=18| ] \ ’?q; 0L=8 wL=16 | ]
r OL=10 . 4 a1.=10 ]
o 08 [ - % -
) b O x+ P
)—-i’ t&.o X+
[ [m
= o4 [ - - X 4 .
i '-P -+
O X
] g o ox * 1
0z = © g 7 o °pg X ]
< o < a
0.0 ST L w0 AR S SR | PR I
0 1 2 3 83 a.5 1 1.6 2
0.492 )
TL 0291

Figure 2. Scaling plots of spin-glass susceptibitity xgg (7,0, L) with (@} # = ~0.492
and (#) § = —0.291, respectively. The statistical errors of data points are smaller than
the size of symbols.

In order to obtain the best estimate of # within the present data, we analysed
them using the method of least squares. The fitting function we used is similar to
(2.28), but includes two more higher-order terms

xsg L 7?4 =1-(az + bz’ + ca®) (3.8)

where = TL~9,

We have calculated the optimal value of @, for which the chi-square is minimum.
We have tried several selections of data in order to see how large the finite-size
correction to scaling is. When we adopt the data for 0.1 § T € 0.6, 4 < L < 186,
we get

- 9=0524(4) S=216 (T<0.6;L>4). 3.9)
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Table 1. The physical parameters and numbers of samples adopted in calculations of the
zero-field spin-glass susceptibility xsg-

L T Nsmp L T Nsmp L T Nsmp
4 0.1 1ocoooo 6 0.1 1000000 8 0.1 1000000
4 0.2 1000000 6 0.2 1000000 8 0.2 10000060
4 0.3 1000000 6 0.3 1000000 8 0.3 1000000
4 0.4 1000000 6 0.4 1000000 8 04 1000000
4 0.5 1000000 6 0.5 1000000 & 0.6 60000
4 06 500000 6 0.6 100000 8 08 10000
4 07 500000 6 0.7 100000 8 1.0 10000
4 08 500000 6 0.3 50 000
4 0.9 500000 6 1.0 50 000
4 1.0 500000
10 0.1 1000000 12 0.1 1000000 16 0.1 30000
10 0.2 1000000 12 0.2 1000000 16 0.2 30000
10 0.3 1000000 12 0.3 1000000 16 0.3 30000
10 0.4 1000000 12 0.4 1000000 16 0.4 30000
10 08 30000 14 0.1 100000
10 08 3000 14 0.2 100 000
10 1.0 3000 14 0.3 100000
14 0.4 100000
Here S is the normalized chi-square defined by
2
S = Z(yz Fﬁt("‘ca)) (3.10)

n—m

where n is the number of the data points and m is the number of the fitting pa-
rameters in the function #;,. The figures in parentheses in (3.9) are estimates of the
statistical errors which were obtained through the method of least-squares. When we
adopt only the data for 0.1 £ T' < 0.6 and 6 < L £ 16, we have

-6 = 0.492(5) §=1.19 (T <0.6;L3>6). (3.11)

For other selections we have obtained the following results:

-6 =0.478(10) $=1.06  (T<06;L328) (3.12)
— 8 =0.470(16) $=1.01 (T £0.6; L >10) (3.13)
~ 6 = 0.490(40) S=1.10  (T<0.6;L3>12). (3.14)

Further reduction of the number of the data points has given meaningless results.
We should note that the error estimates here do not include the systematic error due
to the finite-size effect. We can see that all the above estimates except for the first,
(3.9), agree with each other within a margin for statistical error, and the values of
the normalized chi-square S seem reasonable (near unity). From the above results,
we conclude

— 9 =0.48(1). (3.15)

This value agrees with our previous estimate —8 = 0.476(5) (or 0.51(4)) within the
limit of statistical error.
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4, caM analysis of mean-field data

One difficulty in applying the finite-size scaling analysis to small clusters lies in the
existence of finite-size correction to scaling. For example, there is ambiguity of the
definition of the cluster size L in the finite-size scaling method: the system size
may be defined by the edge length, by the number of sites on the edge, or by the
total number of sites N as L = N'/%. The difference between them can affect the
exponent estimation considerably, when we adopt the data from rather small systems.
Such a type of correction may be expressed through the replacement of L by a
continuous function g(L). The coherent-anomaly method (CaM) [16] overcomes the
difficulty as seen below.

If one measures a quantity Q(7T,0,L) at a temperature, say T,, varying the
system size L, but keeping the relation

T,L~? = constant @.1)
(2.1) is followed by
;0,L) o . .
QT, TYale 4.2

The exponent uf)Q/B is nothing but the one which describes the singularity of the
quantity in the thermodynamic limit; Q(7,0,00) «x T¥9/¢, Note that we eliminate
the system size L from (4.1) by making the use of (4.1). It has been shown [16] that
some systematic series of mean-field solutions T, (L) satisfy the condition (4.1) with
T, = T,.¢- The double-cluster approximation (DCA) [13-15] is especially known to be
tractable.

The detail of the formulation of the double-cluster approximation for spin glasses
has been presented elsewhere [15]. Here we briefly review it emphasizing the scaling
property [14]. Consider two clusters of size L, and Lg. We apply a weak magnetic
field H to the bulk of them and an effective field H 4 to the boundaries. We require
the consistency condition [{Sy)4], = [{So}%]s to hold, where the symbol (---) ,
denotes the thermal average with respect to the Hamiltonian of the system A. The
instability occurs at the temperature T( L 4, Lg) which satisfies the equation [15)

(Tp,0,L4) = Z(Ty,0,Lg). 4.3)

The subscript D indicates that Tp, is the solution of the double-cluster approximation.
The surface susceptibility ¥ in (4.3) is defined by

B(T,0,L) = > [SeSi)ily “4)
I=1:11]

where the summation runs over the boundary sites of the cluster.
We can see [14] that the solution Ty, satisfies the relation (4.1) with T, = Tp,
provided that

AL=|L,~Lg|l< Ly, Lg. (4.5)

Assuming this condition we hereafter abbreviate the notation Tp(L 4, Lg) to Ty(L).
Utilizing Fisher’s finite-size scaling form (2.20), the surface susceptibility is estimated

as
S(T,0,L) e LY"G(TL"?). (4.6)
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The equation for T, under the condition (4.5), is reduced to the following expression,
taking A L up to the first order; 3L /9L =0 at T = T,(L), or

0=~(8/8L)log (Ty,,0,L) = L~ ' D(T, L-?) @.7)

where

G

Dizy=0z——-1+4+n. 4.8)

{x
L
(
The solution =, of the equation D{zy) = 0 gives the relation

To(L)L~? = 2. (4.9)

Therefore we can observe the behaviour (4.2) by adopting T, ( L) as the temperature
Tov

Now we discuss here the relation (4.2) concretely for the two quantities, namely
the critical amplitude ¥g; of the mean-field susceptibility, and the bulk susceptibility
Xsg- First, the critical coefficient Xg; has been found [16] to follow the form (4.2).

The mean_field encrentihility in the framewnrk of the danhle_clucter annrovimatinn
Ak JEA LI TN \)W‘-‘UPI-IUHILJ AL LRIV MAGILIWYT LA LA UL WUUHU LW T WID VW] ul.llllu.\llllﬂl.lull

[15] is, up to the first order of A L, expressed as follows:

XISDG = Nyt E(A)xsg(B) ~ x5q(A)L(B)

Z(A) - Z(B)
z G(TL-®
e gl &8 Lz_n_—(,,_:t—,..). (4.10}
(8/8L)logX D(TL-%) N

Here we simplify the notation as xqq(7,0, L4} = xsg(A). The critical coefficient
Xsq defined by

XSa = Xsa(T - Tp) ™! 4.11)

shows the following behaviour:

Xsa o« Tp ™+ H (z,) (4.12)
with
H(z) = a:‘fsc-lg,—((%. (4.13)

It should be stressed here that the behaviour (4.12) remains unchanged even after we
replace the variable L by (L + a). This type of correction to the system size L may
exist because of the ambiguify of the definition of L. The reiations (4.9) and (4.10)
are now changed to the forms T (L + a)~% = =, and

G(T(L + a)™%)

D(T(L + a)~?) (@14

X?G o (L + a)z'"
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and still we obtain the behaviour (4.12), owing to the elimination of the system size.
Next, the bulk susceptibility xgq also behaves as (4.2), that is

xsg{Tp(£),0,L) T[;'*SG/ 1155 1G(t) di. (4.15)
0

This form is compatible with a more general type of correction to L than the one
mentioned below (4.13); for example the replacement of [, by L{1 +aL~ + .--).

Two of the present authors [15] analysed the two-dimensional 4.J model, using
the data {Tp,,¥sg}, and found that the clusters only up to 4 x 4 are enough to
obtain such an estimate of -~g.; as is consistent with the ones by other authors. In
the present paper we have used the clusters up to 6 x 6. The pairs of clusters used in
the double-cluster approximation and the resulting data are listed together in table 2.
The error estimation here has been done as follows. We have solved the equation
(4.3) using the correlation data averaged over N, samples to obtain 7, and Y (or
Xa» Xp)- The number N, is restricted by the amount of the computer memory and
the job cpu-time limit. We have repeated this job /N, times, renewing the set of
samples. Finally, we have obtained the average and the error from the N, set of
data. The total number of samples N, /N, for each case is listed in table 2.

Table 2. The pairs of clusters used in the double-cluster approximation and the results;
the mean-field critical temperature, the bulk susceptibility of the clusters, and the critical
coefficient of the mean-field susceptibility. The figures in parentheses in the first and
second columns show the round numbers of samples with the unit 108, The figures in
parentheses in the other columns show the error estimates.

cluster A cluster B Tp xza(A) x3g (B) Xsq

2 x 2(38) 2 x 3(38) 0.95866(40)  2.11986(56)  2.83824(63)  2.34737(72)
2 x 3(8) 3x3(3) 0.8056(12) 3.1880(31) 4.447 7(38) 3.4377(55)
3 x 3(48) 3 x 4(15) 0.79549(558)  4.4905(25) 5.2602(29) 3.5136(43)
3 x 4(13) 4 % 4(8) 0.7158(29) 5.745(20) 6.911(24) 4.688 9(65)
4 x 4(10) 4 % 5(6) 0.7167(13) 6.904(12) 8.071(13) 4.683(12)
4 x5(6} 5 x 5(4) 0.6586(18) 8.767(23) 10.401(26) 6.025(23)
5 x 5(6) 5x 6(4) 0.6551(29) 10.456(49) 11.650(55) 6.081(32)
5 x 6(7) 6 x 6(7) 0.6145(19) 12.475(41) 14.056(47) 7.476(31)
2 x 2(9) 3 x3(3) 0.87482(74)  2.2284(10) 4.176 8(13) 2.8265(16)
2 x 3(10) 3 x4(1) 0.8006(13) 3.2002(33) 5.226 5(49) 3.4680(64)
3 x 3(24) 4 x 4(1) 0.7527(17) 4.6729(84) 6.591(12) 4.053(10)
3 x 4(5) 4 x 5(5) 0.71492(80)  5.75127(59)  8.0913(81) 4.6926(63)
4 x 4(12) 5 x 5(6) 0.68425(69)  7.2008(69) 9.993 2(81) 5.3186(39)
4 x 5(37} 5 x 6(2) 0.6554(10) 8.807(13) 11.640(16) 6.052(15)
5 x 5(34) 6 x 6(3) 0.6351(17) 10.782(32) 13.538(41) 6.717(23)

First, we have analysed the series {7}, X} by the method of least squarest. The
log-log plot of the data is shown in figure 3. We have concluded that the condition
(4.5) is practically satisfied. This conclusion has been drawn from the following fact,
we have obtained the two series of data points; one for the pair of clusters L, x L,

t In the least-squares analysis, the horizontal coordinate of lhe data points need to be given accurately.
Owing to the necessity, we have used the data {Th} as the horizontai coordinates without errors, while
we have added the properly scaled errors along the abscissa o(Tp) X (vsg — 1)X56 /7D o the errors
along the ordinate o(Xsg)-
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and L, x (L, + 1), meothcrformepauL x L,and (L;+1) x (L, +1). We
have observed that there is little discrepancy between the curves of the data sets
{TpsXsg1 for the two series. This means the correction term of the order (A L)? is
considerably small.

ch 3 2 ?

j Figure 3. The log-log piots of Ty
V8 Xsqg. 1he errors of the data
are comparable with the size of
the symbols, The solid line shows
the estimate (4.20). The dashed
line is drawn for comparison so

X sa
=

+ that the slope may correspond to
. the domain-wall scaling estimate
1 ¢ =0.291 |7

Since the data as a whole show apparent systematic deviation from the linear
behaviour (4.12), we have tried to fit to all the data the function with higher-order
correction terms

N

Xsa Z Tposetn, (4.16)
The result with N = 3 is

Ysg = 4.56(54) S = {(.343

(all the data with N = 3). (4.17)

Further increase of N has resulted in meaningless estimates with large errors. Then
we have tried the fitting with ¥ = 1 to selected data, The results are

Ysg = 3.97(5) §=0625 (T, <0.76) (4.18)
Ys = 4.00(6) $S=0614 (Tp <0.72) (4.19)
vee = 4.13(10) S =10.204 (T < 0.69) (4.20)
vog = 4.2(2) S=0197 (T < 0.66). (4.21)

Further reduction of the number of data points has resulted in a large error. Owing
to the systematic deviation, the estimate tends to increase as we reduce the number
of data points. Since the values of the normalized chisquare S are similar for (4.20)
and (4.21), we consider that the series converge to the behaviour (4.12) in the region
Tp < 0.69, which is specified by the six data points denoted by “e” in figure 3.
Next, we have analysed the data {1}, xsg(A)} and {7, xg¢( B)}. The plots of
the data show even-odd-oscillatory deviation from the expected behaviour. This fact
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may be caused by the irregularity due to specific shapes of each clusterj. The series
{Tp+xsg(B)} of the pairs L, x L and (L + 1) x (L, + 1) show the smoothest
behaviour (figure 4). We have fitted the function (4.15) to this series rejecting only
the data (2 x 2)-(3 x 3), which deviates apparently from the linear behaviour. The
result is

s = 4.13(5) §=543 (T < 0.81) (4.22)
or the solid line in figure 4. This estimate is consistent with (4.20). The normalized

chi-square is greater than unity, which is caused by the oscillatory behaviour of the
whole series. This may imply a hidden systematic error in this estimation.

L I B N B IR R

—

[+ B - T < - B}

Figure 4. The log-log plots of
T vs xsg{B). The errors of the
data are comparable with the size
of the symbols. Only the series
with the pairs of Ly x Ly and
(Lz+ 1) x(Ly+1) are shown.
] The solid line corresponds to the
Ll VS PN RN B I\ estimate (4.22), while the dashed
0.85 07 075 08 085 09 line, 4 = 0.291 [7].

XSG(BE)

Based on the estimates (4.17), (4.20) and (4.22), we conclude the present section
with the following estimate (the solid line in figure 3)

vsg =4.13(10)  or — 0 = d/vgg = 0.484(12). (4.23)

This agrees with the estimate (3.15) very well. For comparison we have drawn in figure
3 and figure 4 the dashed lines corresponding to the domain-wall-scaling estimate
—6 = —@8; = 0.291 [7]. In both the figures, the present data is not consistent with
these lines.

3. Discussion and summary

In the present paper, we have obtained new estimates of the exponent —8 = 1/
through calculations of the zero-field spin-glass susceptibility, in order to confirm the
previous estimation through the calculation of the zero-temperature magnetization.
We have performed two kinds of calculations of xqq. Both of them have been
performed by the numerical transfer-matrix method. The first is the direct calculation
of the nonlincar susceptibility. The exponent 1/v has been obtained through the

1 ©On the other hand, the data {Tp,Xsg} give rather smooth behaviour. Though the reason of the
difference is not clear, we suggest that the irregularity of the function G(z) may be partially cancelled
between the denominator and the numerator of (4.13)
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finite-size-scaling analysis assuming the asymptotic behaviour of %, predicted by
the droplet argument. The data confirm the prediction well. The critical exponent
obtained in this scheme is

—@=1/=0.48(1). 5.1

The second is the mean-field ‘calculation analysed by the coherent-anomaly

method. The method is based on Fisher's finite-size m.auug form (4. ZUJ, which is

compatible with (2.14). The exponent cstimate g thus obtained is
Ysg = 4.13(10) ~ 2/0.484(12). (5.2)

This is fully consistent with (5.1) via the scaling relation (2.16).

Generally speaking, we cannot objectively exclude the possibility that further cal-
culation may reveal a systematic error of the present estimates. We believe, however,
that finite-size correction does not affect the present results so much. There are three
reasons for this. Firstly, both the scaling plot and the caM plot are fitted well. This
fact suggests that irregularity caused by specific shapes of the clusters is irrelevant in
the present estimates. Secondly, the present two estimates are consistent with each
other, while the estimate in section 4 is expected to be partly free from finite-size cor-
rection. This suggests that the correction to scaling which can be expressed in terms
of the simple replacement of L by g( L) is irrelevant here. Thirdly the estimates (5.1)
and (5.2) agree with the previous estimate (1.5) [12]. Note that the present estimation
and the previous one are complementary to each other. The previous study dealt with
the criticality at T = 0 and H — 0, while the present one, at H =0 and T — 0.

Since the exponents v and +gq estimated here are directly related to the
temperature-scaling exponent &, the disagreement between our results and the ones
by other authors (1.1) [8] and (1.2) [9] suggests that the assumption € = fg in the
domain-wall scaling does not hold in the present model. It is also puzzling that our
results are inconsistent with the previous estimates {10, 11] through analyses of eigen-
values of transfer matrices. We believe that more consideration on the effect of the
fractal dimension of the domain walls is required for more complete understanding.
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Appendix. Calculation of higher-order moments through the transfer-matrix method

In this appendix, we describe an algorithm of the transfer-matrix method for high-
order moments. For simplicity of our explanation, let us consider a two-dimensional
lattice of size L, x L,. The extension to higher-dimensional systems is straightforward.
Ouwr task is to calculate

Z,=Tr(e”™m*) (£ =0,1,2,3,...) (A1)
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where

L: L’y

5001

H=- 3 3 ASG i) S6inStarrin ¥ iy Stiein) Stcine)

fx=1i,=1
+ Hii iS5G,

and

M= D" S, i)

(iziiy)

(A2)

(A3)

Assume that the boundary condition in the y direction is free (Ji; 1 ,= 0). Consider
a 2L=_dimensional vector space in which every element of a vector is specified by an

L -bit integer,

Y= (Y VL 1) = Z ‘Zi‘—l‘f),'x

Next let us define transfer matrices as follows:

exp(v;, ;)
Vi, (W) = { exp(—v;, ;)

0

exp(h; ;)
H,-”iy(lbrlu") = { exp(—h;_ ;)

0
exp(fi i)
E,,i,(‘f»”l'f)) = { eXP(-fi,,i,,)
0
and
“+1
&xwwns{~1
0
where
Viiniy) Z O 4y
Aiieiy) = B0, 0
and

Sy EBHG, -

Ly
(9, = 0,1}). (A4
fr=1
(Y ®&=0)
(¢I@¢=2i"_l) (A.S)
otherwise
(V@y=09; = 1)
(W OY=09, =1 -t 41) (A-6)
otherwise
(¥ @y =0;¢, =1)
(W @ =09, =0) (A7)
otherwise
(Yeyp=09, =1)
(¥ @Y= 0,v9; =0) (A.8)
otherwise
(A.9)
(A.10)
(A11)

The symbol & denotes bit-wise exclusive-or operation. Then the partition functions

Zﬂ can be written in the form

Z,= :1(2 Si,,)uFL,,HLyVLy—IFL,,—IHL,,—IVL,-QFL,,—2"'vllell'

fy

(A12)
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Here

I[I

fe,dy

1%
IT#...
F

1‘1

and S; is an operator which transforms F; into SF; , where S = gk

5;. The

ymbol 1 stands for the vector all of whose elements are unity. The algonthm for

calculating Zy, Z,,--- and Z,, is as follows.

(1) w® < FH 1.
(2 For a =1 1t0 ex = i, dO

w® e L gry®,
a!

@) Fori,=0t0:, =L, do
(dFora=01t0 a=p,do

w(®) < F, A Hi Vi wl®
GYFra=1t a=p,do

ney ¢E va(a )

V...O

OFra=1t a=ydo
fa o
W\ = p\™)

(4)Fora =010 o=y, do

Z, < ol lw(®),

(A.16)

(A1T)

(A-18)

A19)

(A.20)

For a finite y, the most time-consuming part of the above procedure is obviously step
3(a) if L, is large. Therefore the computational time is proportional to p, namely

the highest degree of the moment which we wish to calculate.
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